This study provides new insights into the development of high-performance MXene-reinforced coatings to strengthen polymeric nanocomposites by enhancing microstructure, anti-aging properties, corrosion resistance, and robustness. MXene nanoparticles, labeled 25C and 80C, were synthesized using two different methods and incorporated at concentrations ranging from 0.1 to 2.0 wt% into epoxy composites. The results demonstrated that 80C MXene, characterized by its finer morphology and superior dispersion, significantly improved the composite's performance compared to 25C. Electrochemical Impedance Spectroscopy (EIS) tests, along with long-term exposure assessments, suggested that incorporating both types of MXene nanoparticles enhances the corrosion protection performance of epoxy coatings over time. Micro-CT analysis revealed that both types of MXene substantially reduced defects and voids in the polymeric matrix, resulting in enhanced protective performance. This void reduction confirms that the incorporation of both 25C and 80C MXene improves microstructural integrity by filling voids and creating a more continuous, uniform structure, particularly in samples with 0.1 % to 1.0 % MXene flakes. The findings also highlighted MXene's potential in modifying the anti-aging properties of epoxy by inhibiting free radical generation and enhancing the composite's resistance against corrosion. Both 25C and 80C MXene-epoxy groups exhibited a clear trend of diminishing free radical intensity with increasing MXene concentration up to 1.0 %, with free radical intensity reduced by over 40 % compared to neat epoxy. The relationship between MXene concentration and reinforcement was also investigated, revealing superior corrosion protection properties at concentrations of 0.5–1.0 wt%. This research offers a profound understanding of MXene's potential in polymer-based composites, laying a foundation for future investigations aimed at utilizing MXene to achieve superior material properties for a wide range of applications, particularly in the realm of metallic surface protection.
Read full abstract