Laser cladding technology has a wide range of potential industrial applications in the surface strengthening, repair and reuse of orthopedic implants. By employing this technique to conduct same-material surface restoration and enhancement on titanium alloys, it demonstrates significant developmental potential. However, the microstructure of laser additively manufactured titanium alloy differs significantly from that of traditional titanium alloys, which affects its corrosion resistance in human body fluids. To compare the corrosion resistance differences between the cladding layer and the substrate, this study investigates the microstructure of multi-pass laser cladding Ti6Al4V (TC4) titanium alloy and analyzes the corrosion morphology and corrosion products of the cladding layer in simulated body fluids (SBF). By comparing the electrochemical corrosion behavior of laser cladding with that of traditionally manufactured TC4, this research reveals the differences in corrosion resistance between the two titanium alloys. The research demonstrates that the microstructure of cladding primarily consists of prior-β grains and continuous grain boundary α phase, along with a complex basketweave structure composed of fine acicular α phase and lamellar α phase. Additionally, due to the complex thermal cycling process, the acicular α' colonies within the prior-β grains. These features enhance the cladding layer’s resistance to plastic deformation and increase microhardness, though with some uneven distribution. Interestingly, the TC4 cladding layer forms a porous passivation layer after corrosion, primarily composed of a TiO2 passivation film and deposits of hydroxyapatite and other phosphates. Due to the lower β-phase content, finer grains with higher energy states, and a greater proportion of high-angle grain boundaries (HAGBs) in the cladding layer, it exhibits higher electrochemical activity. As a result of these microstructural differences, the corrosion resistance of the TC4 cladding layer in SBF is inferior to that of TC4 manufactured using traditional techniques.
Read full abstract