Aluminum Alloy is extensively used in aerospace and automotive industry due to its light weight and high strength properties. It is generally joined using Friction Stir Welding, which is a solid-state process. During this process residual stresses are developed in the welded region. It is a critical factor affecting the performance and lifespan of welded parts. Accurate measurement of residual stress is very important for ensuring the structural integrity of welded components. The conventional blind hole drilling method for residual stress estimation using the strain rosette, results error in the strain data capturing and compensating it is a challenging task. The omission of strain rosette is possible using the recently developed Digital Image Correlation in conjunction with Blind Hole Drilling. This paper focuses on the feasibility study of DIC in residual stress measurement. To accomplish this, Aluminum alloy AA6082 friction stir welded butt-joints are prepared. The residual stresses were measured at the top side of the weld joint using the DIC-BHD approach. At the weld top position, the transverse residual stress of -100 MPa approx. and the longitudinal residual stress of 118 MPa approx. were estimated.
Read full abstract