Sequence database searches followed by homology-based function transfer form one of the oldest and most popular approaches for predicting protein functions, such as Gene Ontology (GO) terms. These searches are also a critical component in most state-of-the-art machine learning and deep learning-based protein function predictors. Although sequence search tools are the basis of homology-based protein function prediction, previous studies have scarcely explored how to select the optimal sequence search tools and configure their parameters to achieve the best function prediction. In this paper, we evaluate the effect of using different options from among popular search tools, as well as the impacts of search parameters, on protein function prediction. When predicting GO terms on a large benchmark dataset, we found that BLASTp and MMseqs2 consistently exceed the performance of other tools, including DIAMOND-one of the most popular tools for function prediction-under default search parameters. However, with the correct parameter settings, DIAMOND can perform comparably to BLASTp and MMseqs2 in function prediction. Additionally, we developed a new scoring function to derive GO prediction from homologous hits that consistently outperform previously proposed scoring functions. These findings enable the improvement of almost all protein function prediction algorithms with a few easily implementable changes in their sequence homolog-based component. This study emphasizes the critical role of search parameter settings in homology-based function transfer and should have an important contribution to the development of future protein function prediction algorithms.
Read full abstract