Understanding the seasonal behaviours of respiratory viruses is crucial for preventing infections. We evaluated the seasonality of respiratory viruses using time-series analyses. This study analysed prospectively collected nationwide surveillance data on eight respiratory viruses, gathered from the Korean Influenza and Respiratory Surveillance System. The data were collected on a weekly basis by 52 nationwide primary healthcare institutions between 2015 and 2019. We performed Spearman correlation analyses, similarity analyses via dynamic time warping (DTW) and seasonality analyses using seasonal autoregressive integrated moving average (SARIMA). The prevalence of rhinovirus (RV, 23.6%-31.4%), adenovirus (AdV, 9.2%-16.6%), human coronavirus (HCoV, 3.0%-6.6%), respiratory syncytial virus (RSV, 11.7%-20.1%), influenza virus (IFV, 11.7%-21.5%), parainfluenza virus (PIV, 9.2%-12.6%), human metapneumovirus (HMPV, 5.6%-6.9%) and human bocavirus (HBoV, 5.0%-6.4%) were derived. Most of them exhibited a high positive correlation in Spearman analyses. In DTW analyses, all virus data from 2015 to 2019, except AdV, exhibited good alignments. In SARIMA, AdV and RV did not show seasonality. Other viruses showed 12-month seasonality. We describe the viruses as winter viruses (HCoV, RSV and IFV), spring/summer viruses (PIV, HBoV), a spring virus (HMPV) and all-year viruses with peak incidences during school periods (RV and AdV). This is the first study to comprehensively analyse the seasonal behaviours of the eight most common respiratory viruses using nationwide, prospectively collected, sentinel surveillance data.