To improve the energy absorption properties of honeycomb structures based on the underlying mechanism of uniform stress dispersion and to effectively increase the strength of a spiderweb, a corner-enhanced spiderweb hierarchical honeycomb structure was proposed herein. This study involved a quasistatic compression test and simulation of a corner-enhanced spiderweb hierarchical structure complemented by 3D printing. The deformation pattern of the common spiderweb honeycomb (CSH) was //-shaped. However, the deformation pattern of the honeycomb after corner enhancement tended to be monolithic, forming an X shape. The deformation characteristics of both the CSH and the first-order local cellular elements were analyzed. The corner-enhanced honeycomb cellular elements dispersed the load onto the inner wall to achieve a common load-bearing effect. Further numerical simulation analysis was carried out in conjunction with the experiments, and local destruction analysis was performed for single-cell elements. Corner enhancement could increase the plastic hinge energy absorption of the structure, with a first-order corner-enhanced spiderweb honeycomb (CESH-F) exhibiting a 46.3 % improvement in specific energy absorption compared to that of a conventional CSH. The layers were reinforced to compress the load uniformly, and a third-order corner-enhanced spiderweb honeycomb (CESH-T) had a 25.7 % improvement in specific energy absorption compared to that of the CESH-F. In addition, optimization was performed for corner-enhanced spiderweb honeycomb (CESH) according to different helix radii. The effect of the radial line thickness on honeycomb-specific energy absorption was explored, and the radial line thickness was positively proportional to honeycomb-specific energy absorption. These findings offered valuable insights into the design of lightweight and high-energy-absorbing biomimetic structures.
Read full abstract