The stratum corneum (SC), the outermost epidermal layer, plays a pivotal role in skin barrier function. This review delves into the intricate process of protein degradation within the stratum corneum, elucidating the roles of specific enzymes, regulatory mechanisms and the consequent impact on various skin conditions. Protein degradation is a finely tuned process, orchestrated by a suite of proteolytic enzymes like kallikreins. These enzymes are responsible for the breakdown of corneodesmosomes and the orderly desquamation of corneocytes, a process essential for skin homeostasis. Another critical enzymatic process is the breakdown of proteins like filaggrin and the generation of amino acids and their derivatives, required in the physiological water-handling properties of the SC. Regulation of these proteolytic activities is complex, involving a balance between endogenous inhibitors and other factors like pH, hydration and environmental stressors. Dysregulation of protease activity is linked to a spectrum of skin conditions, ranging from xerosis to inflammatory diseases like atopic dermatitis and psoriasis. Aberrant protein degradation can lead to compromised skin barrier function, increased tissue water loss and heightened susceptibility to infections and allergens. Understanding the factors affecting protein degradation can inform the development of targeted skincare products. Advances in biochemistry and dermatology have paved the way for the search for active ingredients designed to modulate protease activity. Such innovations may offer promising therapeutic avenues for enhancing skin barrier function and treating skin disorders. This review underscores the significance of enzymatic protein degradation in the SC and its regulatory mechanisms. It provides insights into the pathophysiology of skin diseases and outlines the potential for novel skincare interventions. By bridging the gap between fundamental research and practical applications, this article aims to inspire further investigation for better understanding of skin physiology and innovation in the realm of skincare product development.
Read full abstract