Paleomagnetic studies of meteorites over the past two decades have revealed that the cores of multiple meteorite parent bodies, including those of certain chondritic groups, generated dynamo fields as they crystallised. However, uncertainties in the direction and mode of core solidification in asteroid-sized bodies have meant using the timings and durations of these fields to constrain parent body properties, such as size, is challenging. Here, we use updated equations of state and liquidus relationships for Fe-FeS liquids at low pressures to calculate the locations at which solids form in these cores. We perform these calculations for core-mantle boundary (CMB) pressures from 0–2 GPa, and Fe-FeS liquid concentrations on the iron-rich side of the eutectic, as well as two values of iron thermal expansivity that cover the measured uncertainties in this parameter, and adiabatic and conductive cooling of these cores. We predict inward core crystallisation from the CMB in asteroids due to their low < 0.5 GPa pressures regardless of the uncertainties in other key core parameters. However, due to low internal pressures in these cores, remelting of any iron snow, as proposed to generate Ganymede’s present-day field, may be unlikely as the cores are approximately isothermal. Therefore a different mode of inward core solidification is possibly required to explain compositionally-driven dynamo action in asteroids. Additionally, we identify possible regimes at higher > 0.6 − 2 GPa pressures in which crystallisation can occur concurrently at the CMB and the centre.
Read full abstract