Toxic environmental pollutants pose a health risk for both humans and animals. Accumulation of industrial contaminants in freshwater fish may become a significant threat to biodiversity. Comprehensive monitoring of the impact of environmental stressors on fish functional systems is important and use of non-invasive tools that can detect the presence of these toxicants in vivo is desirable. The blood circulatory system, by virtue of its sensitivity to the external stimuli, could be an informative indicator of chemical exposure. In this study, microscopic photoplethysmography-based approach was used to investigate the cardiac activity in broad whitefish larvae (Coregonus nasus) under acute exposure to cadmium and phenol. We identified contamination-induced abnormalities in the rhythms of the ventricle and atrium. Our results allow introducing additional endpoints to evaluate the cardiac dysfunction in fish larvae and contribute to the non-invasive evaluation of the toxic effects of industrial pollutants on bioaccumulation and aquatic life.
Read full abstract