Memristive devices based on layered materials have the potential to enable low power electronics with ultra-fast operations toward the development of next generation memory and computing technologies. Memristor performance and switching behavior crucially depend on the switching matrix and on the type of electrodes used. In this work, we investigate the effect of different electrodes in 1D MoO2–MoS2 core shell nanowire memristors by highlighting their role in achieving distinct switching behavior. Analog and digital resistive switching are realized with carbon based passive (multi-layer graphene and multiwall carbon nanotube) and 3D active metal (silver and nickel) electrodes, respectively. Temperature dependent electrical transport studies of the conducting filament down to cryogenic temperatures reveal its semiconducting and metallic nature for passive and active top electrodes, respectively. These investigations shed light on the physics of the filament formation and provide a knob to design and develop the memristors with specific switching characteristics for desired end uses.
Read full abstract