The evolution of the regular fine structure of the colored matter distribution produced, when a freely falling multifluid drop spreads in deep water, is for the first time traced using the techniques of engineering photo and video recording. The flow pattern is studied in the initial stage of the formation of a cavity and a crown during the coalescence of a compound drop, whose core is a drop of alizarin ink solution coated with an oil shell. The distributions of the colored fluid at the cavity bottom and the crown walls include streaky structures, whose formation can be due to the processes of the available potential surface energy (APSE) conversion occurring when the contact surfaces of the merging fluids are eliminated. In the experiments the height of the falling drop was varied. The core position in the compound drop was not checked but was determined by separation conditions. The ink core disintegration into fibers was observable in all the experiments. The areas of the cavity and crown surfaces covered by the colored fluid reached maximum at the central position of the core.