Abstract In the inner core of a tropical cyclone, turbulence not only exists in the boundary layer (BL) but can also be generated above the BL by eyewall and rainband clouds. Thus, the treatment of vertical turbulent mixing must go beyond the conventional scope of the BL. The turbulence schemes formulated based on the turbulent kinetic energy (TKE) are attractive as they are applicable to both deep and shallow convection regimes in the tropical cyclone (TC) inner core provided that the TKE production and dissipation can be appropriately determined. However, TKE schemes are not self-closed. They must be closed by an empirically prescribed vertical profile of mixing length. This motivates this study to investigate the sensitivity of the simulated TC intensification to the sloping curvature and asymptotic length scale of mixing length, the two parameters that determine the vertical distribution of a prescribed mixing length. To tackle the problem, both idealized and real-case TC simulations are performed. The results show that the simulated TC intensification is sensitive to the sloping curvature of mixing length but only exhibits marginal sensitivity to the asymptotic length scale. The underlying reasons for such sensitivities are explored analytically based on the Mellor and Yamada level-2 turbulence model and the analyses of azimuthal-mean tangential wind budget. The results highlight the uncertainty and importance of mixing length in the numerical prediction of TCs and suggest that future research should focus on searching for physical constraints on mixing length, particularly in the low- to midtroposphere, using observations and large-eddy simulations. Significance Statement The parametric representation of subgrid-scale turbulent mixing is one of the major sources of uncertainty in numerical predictions of tropical cyclones (TCs). This study investigates how the numerical prediction of TC intensification is affected by the turbulent mixing length, a length scale that is required to close a turbulence scheme formulated based on the turbulent kinetic energy (TKE). The research highlights the uncertainty and importance of mixing length in numerical prediction of TCs and suggests that future research should focus on searching for physical constraints on the mixing length, particularly in the low- to midtroposphere, using observations and large-eddy simulations.
Read full abstract