Light Paulownia seamless-edged glued solid wood panels (SWPs), single-layered and three-layered, were analyzed in this study. Both panel types were calibrated at a thickness of 19 mm, a dimension very often in demand on the SWP market, but produced with other wood species (for example, spruce, pine, larch and fir). The panels were bonded with melamine-urea formaldehyde, polyurethane and polyvinyl acetate resins. The panels were tested for their physical (density) and mechanical (modulus of rupture, modulus of elasticity, compressive shear strength and wood breakage rate) properties. For the single-layered panels, the mechanical and physical properties did not differ significantly and were similar to massive Paulownia wood. For the three-layered panels, the adhesive application of polyurethane influenced positively all SWP properties. Considering the differences in density, these composites failed to achieve the performance of one- and single-layered panels made of spruce. The results of these findings recommend Paulownia SWPs to be used as lightweight and sustainable core materials in sandwich structures for the furniture and packaging industry, sport articles or non-load-bearing constructions.
Read full abstract