ObjectivesProteus are known as opportunistic human pathogens that can cause a variety of infections. Proteus appendicitidis is a novel Proteus species associated with appendicitis, whereas their genomic characteristics and virulence potential remain understudied. This study aims to compare the genomic features of P. appendicitidis to that of the close Proteus species, and to assess its virulence-factor encoding capacity as an emerging pathogen. MethodsGenomes similar to that of P. appendicitidis HZ0627T were retrieved from the PATRIC-v3.6.10 web-server using the implanted Similar Genome Finder tool. Average nucleotide identity (ANI) between HZ0627T and the retrieved genomes was calculated using FastANI-v1.33. Core-genome sequences were extracted using Roary-v3.13.0, and core-genomic tree was constructed using FastTree-v2.1.11. Virulence-factor encoding capacity was predicted using PathoFact-v1.0. ResultsTwo previously unclassified Proteus sp. strains were reclassified as P. appendicitidis. Strains phylogenomically close to P. appendicitidis were clustered into five species, three of which were previously categorized under P. vulgaris biogroup 3. Remarkably, Proteus genomosp. 6 was identified as the closest species to P. appendicitidis, exhibiting ANI values ranging from 94.45 % to 94.95 % against HZ0627T. Genome annotation revealed shared genomic features and antimicrobial resistance (AMR) genes between P. appendicitidis and its phylogenetic neighbors. Additionally, P. appendicitidis is hypothesized to share infection mechanisms with Proteus genomosp. 6, as evidenced by the encoding of numerous virulence factors implicated in cell lysis and membrane pore-formation in the genome of both species. ConclusionsThis study provides genomic insights of P. appendicitidis sp. nov. and its taxonomic relatives, shedding light on their evolutionary relationships, pathogenic mechanisms, and AMR profiles. The findings are significant for the development of targeted therapeutic interventions against infections caused by this emerging pathogen.