Relative to healthy controls, lighter copper isotopic compositions have been observed in the serum of breast cancer and end-stage liver disease patients, raising the possibility that Cu isotope ratios could be used as a tracer for disease progression. Here, we assess the potential of natural Cu isotopic variations (expressed as δ65Cu) as diagnostic tools for cancer progression and/or liver failure by performing a first-order analysis of Cu isotopic cycling in the human body. Using a box model, we simulate the kinetics of Cu mass transfer throughout significant reservoirs in the body, allowing isotopic fractionation to occur during Cu uptake/release from these reservoirs. With this model, we determine under which conditions the serum δ65Cu values would reflect perturbation related to cancer growth and/or liver failure at a level resolvable with modern mass spectrometry. We find that tumor growth alone is unable to explain the light isotopic signature observed in serum. Instead, we find that metabolic changes to the liver function resulting in a ∼1‰ isotope fractionation during Cu uptake from the blood into the liver can readily explain the long-term serum isotopic shift of ∼0.2‰ observed in cancer patients. A similar fractionation (∼1.3‰) during Cu uptake into the liver also readily explains the -1.2‰ shift observed in the serum of cirrhosis patients with ascites, suggesting a potentially common driver of isotopic fractionation in both cases. Using this model, we then test hypotheses put forward by previous studies and begin to probe the mechanisms behind the measured isotopic compositions.
Read full abstract