We study a nanoelectromechanical system consisting of a Cooper pair box qubit performing nanomechanical vibrations between two bulk superconductors. We demonstrate that a bias voltage applied to the superconductors may generate states represented by entanglement between qubit states and quantum ’cat states’, i.e. a superposition of the coherent states of the nanomechanical oscillator. We characterize the formation and development of such states in terms of the corresponding Wigner function and entropy of entanglement. Also, we propose an experimentally feasible detection scheme for the effect, in which the average current that attains the specific features created by the entanglement is measured.