Background and Objective:Fetal brain tissue segmentation provides foundational support for comprehensively understanding the neurodevelopment of normal and congenital disease-affected fetuses. Manual labeling is very time-consuming, and automated segmentation methods can greatly improve the efficiency of doctors. At the same time, fetal brain tissue undergoes various changes throughout the pregnancy, leading to a continuous change in tissue contrast, which greatly increases the difficulty of training segmentation methods. This study aims to develop an automated segmentation model that can efficiently and accurately segment fetal brain tissue, improving the workflow for medical professionals. Methods:We propose a novel deep learning-based segmentation model that incorporates three innovative components: Firstly, a new Dual Dilated Attention Block (DDAB) is proposed in the encoder part to enhance the feature extraction of local spatial and structural contextual information. Secondly, a Multi-scale Deformable Transformer (MSDT) is integrated into the bottleneck to improve the feature extraction of global information on local spatial and structural contextual information. Thirdly, we use a novel block based on Graph Convolution Attention (GCAB) in the decoder, which effectively enhances the features at the decoder.The code is available at https://github.com/unicoco7/MG-Net/. Results:We trained and tested on the FeTA 2021 and FeTA 2022 datasets, and evaluated using seven popular metrics, including Dice, IoU, MAE, BoundaryF, PRE, SEN, and SPE. Compared to the current state-of-the-art 3D segmentation models such as nnFormer, SwinUNETR, and 3DUX-net, our proposed method has surpassed all of them in metrics like Dice, IoU, and MAE. Specifically, on the FeTA 2021 dataset, our model achieved a Dice of 0.8666, an IoU of 0.7646, and an MAE of 0.0027; on the FeTA 2022 dataset, it achieved a Dice of 0.8552, an IoU of 0.7470, and an MAE of 0.0005. Conclusion:In this paper, we propose a model for three-dimensional fetal brain tissue segmentation based on multi-scale feature fusion and graph convolution attention mechanism, and conduct experimental evaluation on the FeTA 2021 and FeTA 2022 datasets. Understanding the boundaries of fetal brain tissue is crucial for doctors’ diagnosis, so the proposed model is expected to improve the speed and accuracy of doctors’ diagnoses.
Read full abstract