This paper studies the convergence properties of general Runge–Kutta methods when applied to the numerical solution of a special class of stiff non linear initial value problems. It is proved that under weaker assumptions on the coefficients of a Runge–Kutta method than in the standard theory of B-convergence, it is possible to ensure the convergence of the method for stiff non linear systems belonging to the above mentioned class. Thus, it is shown that some methods which are not algebraically stable, like the Lobatto IIIA or A-stable SIRK methods, are convergent for the class of stiff problems under consideration. Finally, some results on the existence and uniqueness of the Runge–Kutta solution are also presented.