The whale optimization algorithm (WOA) is constructed on a whale's bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The sine cosine algorithm (SCA) constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. Therefore, a hybrid nonlinear WOA with SCA (SCWOA) is emphasized to estimate benchmark functions and engineering designs, and the ultimate intention is to investigate reasonable solutions. Compared with other algorithms, such as BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, SCWOA exemplifies a superior convergence effectiveness and greater computation profitability. The experimental results emphasize that the SCWOA not only integrates investigation and extraction to avoid premature convergence and realize the most appropriate solution but also exhibits superiority and practicability to locate greater computation precision and faster convergence speed.