Applying an extended Peierls–Hubbard model to π electrons in a coronene isomer, we investigate their ground-state properties and photoinduced dynamics with particular interest in possible loop current states. Once we switch on a static magnetic field perpendicular to the coronene disk, diamagnetic (diatropic) and paramagnetic (paratropic) loop currents appear on the rim circuit and inner hub, respectively. Besides this well-known homocentric two-loop current state, heterocentric multiloop current states can be stabilized by virtue of possible electron–lattice coupling. These multiloop current states generally have a larger diamagnetic moment than the conventional two-loop one, and hence it follows that coronene, or possibly polycyclic conjugated hydrocarbons in general, may become more aromatic than otherwise with their π electrons being coupled to phonons. When we photoirradiate a ground-state coronene isomer without applying a static magnetic field, loop currents are induced in keeping with the incident light polarization. Linearly and circularly polarized lights induce heterocentric two-loop and multiloop currents, respectively, without and together with two homocentric loop currents of the conventional type, respectively. The heterocentric two-loop currents occur in a mirror-symmetric manner, which reads as the emergence of a pair of antiparallel magnetic moments, whereas the heterocentric multiloop ones appear at random in both space and time, which reads as the emergence of disordered local magnetic moments.
Read full abstract