The completeness of landslide inventories and the selection of evaluation models significantly impact the accuracy of landslide susceptibility assessments. Conventional field geological survey methods and single remote-sensing technology struggle to reliably identify landslides under complex environmental conditions. Moreover, prevalent landslide susceptibility evaluation models are often plagued by issues such as subjectivity and overfitting. Therefore, we investigated the uncertainty in susceptibility modeling from the aspects of landslide inventory quality and model selection. The study focused on Luquan County in Yunnan Province, China. Leveraging multisource remote-sensing technologies, particularly emphasizing optical remote sensing and InSAR time-series deformation detection, the existing historical landslide inventory was refined and updated. This updated inventory was subsequently used to serve as samples. Nine evaluation indicators, encompassing factors such as distance to faults and tributaries, lithology, distance to roads, elevation, slope, terrain undulation, distance to the main streams, and average annual precipitation, were selected on the basis of the collation and organization of regional geological data. The information value and two coupled machine-learning models were formulated to evaluate landslide susceptibility. The evaluation results indicate that the two coupled models are more appropriate for susceptibility modeling than the single information value (IV) model, with the random forest model optimized by genetic algorithm in Group I2 exhibiting higher predictive accuracy (AUC = 0.796). Furthermore, comparative evaluation results reveal that, under equivalent model conditions, the incorporation of a remote-sensing landslide inventory significantly enhances the accuracy of landslide susceptibility assessment results. This study not only investigates the impact of landslide inventories and models on susceptibility outcomes but also validates the feasibility and scientific validity of employing multisource remote-sensing technologies in landslide susceptibility assessment.