The conventional MPPT method has drawbacks, such as that under partial shading conditions, several peaks occur and identifying the global peak is difficult. It may converge to a local peak and lead to poor conversion efficiency and tracking efficiency. Implementation of a hybrid algorithm by integrating P&O and metaheuristic algorithms can perform better under partial shading conditions. But the tracking speed is low and the response time is longer. To mitigate the issues mentioned above, a new hybrid algorithm has been suggested that integrates GWO and a modified fast terminal sliding mode controller (MFTSMC). The suggested method with three phase ILBC is incorporated into the PV system. The MATLAB tool is employed to experiment with this study. The performance of GWO-MFTSMC is analysed through MATLAB/ SIMULINK and compared with the performance of ANN-FTSMC and PSO-FTSMC algorithm based MPPT techniques. A hardware prototype is developed and tested for 5 × 200 W solar PV modules with the GWO-MFTSMC algorithm. The proposed method conversion efficiency is 99.72% and 96.15% under simulation and hardware realisation, respectively, which is higher than the ANN-FTSMC and PSO-FTSMC methods.
Read full abstract