Communication in a heterogeneous, dynamic, low-power, and lossy network is dependable and seamless thanks to Mobile Ad-hoc Networks (MANETs). Low power and Lossy Networks (LLN) Routing Protocol (RPL) has been designed to make MANET routing more efficient. For different types of traffic, RPL routing can experience problems with packet transmission rates and latency. RPL is an optimal routing protocol for low power lossy networks (LLN) having the capacity to establish a path between resource constraints nodes by using standard objective functions: OF0 and MRHOF. The standard objective functions lead to a decrease in the network lifetime due to increasing the computations for establishing routing between nodes in the heterogeneous network (LLN) due to poor decision problems. Currently, conventional Mobile Ad-hoc Network (MANET) is subjected to different security issues. Weathering those storms would help if you struck a good speed-memory-storage equilibrium. This article presents a security algorithm for MANET networks that employ the Rapid Packet Loss (RPL) routing protocol. The constructed network uses optimization-based deep learning reinforcement learning for MANET route creation. An improved network security algorithm is applied after a route has been set up using (ClonQlearn). The suggested method relies on a lightweight encryption scheme that can be used for both encryption and decryption. The suggested security method uses Elliptic-curve cryptography (ClonQlearn+ECC) for a random key generation based on reinforcement learning (ClonQlearn). The simulation study showed that the proposed ClonQlearn+ECC method improved network performance over the status quo. Secure data transmission is demonstrated by the proposed ClonQlearn + ECC, which also improves network speed. The proposed ClonQlearn + ECC increased network efficiency by 8-10% in terms of packet delivery ratio, 7-13% in terms of throughput, 5-10% in terms of end-to-end delay, and 3-7% in terms of power usage variation.
Read full abstract