Data envelopment analysis (DEA) is a mathematical programming approach for evaluating the technical efficiency performances of a set of comparable decision-making units that transform multiple inputs into multiple outputs. The conventional DEA models are based on crisp input and output data, but real-world problems often involve random output data. The main purpose of the paper is to propose a joint chance-constrained DEA model for analyzing a real-world situation characterized by random outputs and crisp inputs. After developing the model, we carry out the following: First, we obtain an upper bound of this stochastic non-linear model deterministically by applying a piecewise linear approximation algorithm based on second-order cone programming; Second, we obtain a lower bound with use of a piecewise tangent approximation algorithm, which is also based on second-order cone programming; and then we use a numerical example to demonstrate the applicability of the proposed joint chance-constrained DEA framework.