Single-entity electrochemistry has gained significant attention for the analysis of individual cells, nanoparticles, and droplets, which is leveraged by robust electrochemical techniques such as chronoamperometry and cyclic voltammetry (CV) to extract information about single entities, including size, kinetics, mass transport, etc. For an in-depth understanding such as dynamic interaction between the electrode and a single entity, the unconventional fast electrochemical technique is essential for time-resolved analysis. This fast experimental technique is unfortunately hindered by a substantial nonfaradaic response. In this work, we introduce fast-scan sinusoidal voltammetry (FSSV) combined with a short-time Fourier transform (STFT) for analyzing single emulsion droplets. Utilizing ultramicroelectrode and fast potential sweeps up to apparent 200 V/s, we achieved high temporal resolution (8 ms per voltammogram) to capture the current signals during droplet collisions. STFT analysis reveals the amplitude and phase changes, allowing for the accurate detection of collision events even in the absence of redox species. By adopting an algorithm of drift-free baseline subtraction, a conventional CV shape was obtained in FSSV. The reacted charge from the single-entity voltammogram at every 8 ms was also plotted. This method effectively addresses limitations in traditional techniques, providing insights into emulsion dynamics such as droplet contact and droplet breakdown.
Read full abstract