AbstractWe examine the influence of convective organization on extreme tropical precipitation events using model simulation data from the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP). At a given SST, simulations with convective organization have more intense precipitation extremes than those without it at all scales, including instantaneous precipitation at the grid resolution (3 km). Across large‐domain simulations with convective organization, models with explicit convection exhibit better agreement in the response of extreme precipitation rates to warming than those with parameterized convection. Among models with explicit convection, deviations from the Clausius‐Clapeyron scaling of precipitation extremes with warming are correlated with changes in organization, especially on large spatiotemporal scales. Though the RCEMIP ensemble is nearly evenly split between CRMs which become more and less organized with warming, most of the models which show increased organization with warming also allow super‐CC scaling of precipitation extremes. We also apply an established precipitation extremes scaling to understand changes in the extreme condensation events leading to extreme precipitation. Increased organization leads to greater increases in precipitation extremes by enhancing both the dynamic and implied efficiency contributions. We link these contributions to environmental variables modified by the presence of organization and suggest that increases in moisture in the aggregated region may be responsible for enhancing both convective updraft area fraction and precipitation efficiency. By leveraging a controlled intercomparison of models with both explicit and parameterized convection, this work provides strong evidence for the amplification of tropical precipitation extremes and their response to warming by convective organization.
Read full abstract