Two-dimensional thermomagnetic convection of magnetic fluid possessing internal spin and relaxation of magnetization with high thermal sensitivity is numerically analyzed under a non-uniform magnetic and thermal field, using a spectral difference scheme, magnetic fluid is assumed to be placed between concentric cylinders, an azimuthal magnetic field being produced by an electric current though the inner cylinder, which is an adiabatic wall, whereas a half of the outer cylinder is kept at a high constant temperature and the rest half is at a lower constant temperature. As a result, in case of ▽T × ▽|H| ≠ 0, thermomagnetic convection is found to be produced, the convection pattern depends on electric current distribution, depending on which multiple or single circulation is produced, thus, it shows that thermomagnetic convection pattern is controlled by changing relative direction of temperature gradient to that of a magnetic field.
Read full abstract