The modern Internet of Autonomous Vehicles (IoVs) has enabled the development of autonomous vehicles that can interact with each other and their surroundings, facilitating real-time data exchange and communication between vehicles, infrastructure, and the external environment. The lack of security procedures in vehicular networks and Controller Area Network (CAN) protocol leaves vehicles exposed to intrusions. One common attack type is the message injection attack, which inserts fake messages into original Electronic Control Units (ECUs) to trick them or create failures. Therefore, this paper tackles the pressing issue of cyber-attack detection in modern IoV systems, where the increasing connectivity of vehicles to the external world and each other creates a vast attack surface. The vulnerability of in-vehicle networks, particularly the CAN protocol, makes them susceptible to attacks such as message injection, which can have severe consequences. To address this, we propose an intelligent Intrusion detection system (IDS) to detect a wide range of threats utilizing machine learning techniques. However, a significant challenge lies in the inherent imbalance of car-hacking datasets, which can lead to misclassification of attack types. To overcome this, we employ various imbalanced pre-processing techniques, including NearMiss, Random over-sampling (ROS), and TomLinks, to pre-process and handle imbalanced data. Then, various Machine Learning (ML) techniques, including Logistic Regression (LR), Linear Discriminant Analysis (LDA), Naive Bayes (NB), and K-Nearest Neighbors (k-NN), are employed in detecting and predicting attack types on balanced data. We evaluate the performance and efficacy of these techniques using a comprehensive set of evaluation metrics, including accuracy, precision, F1_Score, and recall. This demonstrates how well the suggested IDS detects cyberattacks in external and intra-vehicle vehicular networks using unbalanced data on vehicle hacking. Using k-NN with various resampling techniques, the results show that the proposed system achieves 100% detection rates in testing on the Car-Hacking dataset in comparison with existing work, demonstrating the effectiveness of our approach in protecting modern vehicle systems from advanced threats.
Read full abstract