Expanding swept volume technology via continuous-phase polymer solution and dispersed-phase particle gel is an important technique to increase oil production and control water production in mature waterflooding reservoirs. However, problems such as the low viscosity retention rate, deep migration, and weak mobility control of conventional polymers, and the contradiction between migration distance of particle gel and plugging strength, restrict the long-term effectiveness of oil displacement agents and the in-depth sweep efficiency expanding capability in reservoirs. Combined with the technical advantages of polymer and particle gel, a novel controllable phase-transition polymer was developed and systematically studied to gain mechanistic insights into enhanced oil recovery for mature waterflooding reservoirs. To reveal the phase-transition mechanism, the molecular structure, morphology, and rheological properties of the controllable phase-transition polymer were characterized before and after phase transition. The propagation behavior of the controllable phase-transition polymer in porous media was studied by conducting long core flow experiments. Two-dimensional micro visualization and parallel core flooding experiments were performed to investigate the EOR mechanism from porous media to pore level. Results show that the controllable phase-transition polymer could change phase from dispersed-phase particle gel to continuous-phase solution with the prolongation of ageing time. The controllable phase-transition polymer exhibited phase-transition behavior and good propagation capability in porous media. The results of micro visualization flooding experiments showed that the incremental oil recovery of the controllable phase-transition polymer was highest when a particle gel and polymer solution coexisted, followed by a pure continuous-phase polymer solution and pure dispersed-phase particle gel suspension. The recovery rate of the novel controllable phase-transition polymer was 27.2% after waterflooding, which was 8.9% higher than that of conventional polymer, providing a promising candidate for oilfield application.