Background and Objective:There is a rising interest in exploiting aggregate information from external medical studies to enhance the statistical analysis of a modestly sized internal dataset. Currently available software packages for analyzing survival data with a cure fraction ignore the potentially available auxiliary information. This paper aims at filling this gap by developing a new R package CureAuxSP that can include subgroup survival probabilities extracted outside into an interested internal survival dataset. Methods:The newly developed R package CureAuxSP provides an efficient approach for information synthesis under the mixture cure models, including Cox proportional hazards mixture cure model and the accelerated failure time mixture cure model as special cases. It focuses on synthesizing subgroup survival probabilities at multiple time points and the underlying method development lies in the control variate technique. Evaluation of homogeneity assumption based on a test statistic can be automatically carried out by our package and if heterogeneity does exist, the original outputs can be further refined adaptively. Results:The R package CureAuxSP provides a main function SMC.AxuSP() that helps us adaptively incorporate external subgroup survival probabilities into the analysis of an internal survival data. We also provide another function Print.SMC.AuxSP() for printing the results with a better presentation. Detailed usages are described, and implementations are illustrated with numerical examples, including a simulated dataset with a well-designed data generating process and a real breast cancer dataset. Substantial efficiency gain can be observed by our results. Conclusions:Our R package CureAuxSP can make the wide applications of utilizing auxiliary information possible. It is anticipated that the performance of mixture cure models can be improved for the survival data with a cure fraction, especially for those with small sample sizes.
Read full abstract