The issue of creating robotic anthropomorphic mechanisms called exoskeletons for humans is relevant. The exoskeleton design became practically possible due to technological developments, creating powerful computers, sensors, and detectors, collecting info about human movements, and advances in control theory. Introduction of available achievements in the domain of exoskeleton engineering and design, as well as exoskeleton parts and their control methods, protected by patents, to a general audience is the objective of the article. The research methods are analysis of patents and scientific publications on the topic of exoskeletons, and graphical processing of research results. The result of the conducted research is the survey of the patented exoskeletons available in the scientific world. It has been found that the available exoskeleton models are still not user-friendly enough. Therefore, the authors of the article developed and patented a model of an exoskeleton with variable-length links. The model of practical implementation of variable-length link based on using magneto-rheological fluid and adjusting the link stiffness by applying an external magnetic field has been proposed. The proposed model augments the exoskeleton user experience. It has been found that intense publication growth in scientific journals on researched topics started after 2011. The number of published exoskeleton patents increased almost tenfold in the past ten years by 2021. All these demonstrate significant interest in exoskeletons design.