In the article, using MatLab dynamic simulation modeling, a study was made of the excitation systems of powerful synchronous generators of stationary diesel generator sets, which are the main sources of emergency power supply for nuclear power plants. The optimal structural complexity mathematical model of a synchronous machine in relative units and orthogonal synchronous coordinate system is used. A comprehensive simulation of diesel generator sets was carried out with the reproduction of both the dynamics of the automatic control system for excitation of a synchronous generator and the diesel engine control system. The simulation takes into account the features of starting a diesel generator to accelerate a synchronous machine, its initial excitation from a battery. Particular emphasis is placed on the study of self-excitation modes through a transformer connected to the stator circuit of the generator and a thyristor rectifier with an excitation winding as a load, as well as parallel operation with the power system. As a result, the processes of starting a diesel generator set in idle mode, effective self-excitation, autonomous operation of the generator at idle, and applying a load to the generator up to the values of permissible overload were simulated. The work of all channels of the control system is shown, including the signals of the regulators of the automatic control system and mechanical variables that are inaccessible in practice. The adequacy of the developed model is proved by comparison with a real physical experiment when testing a diesel generator at a nuclear power plant. The possibility of using the model developed in MatLab as a virtual test site for testing a diesel generator set and a computer simulator for specialized engineering personnel of a nuclear power plant is demonstrated.
Read full abstract