This paper discusses the multiobjective optimization techniques for a class of optimal control problems in mechanics. We deal with constrained nonlinear control systems described by the Euler-Lagrange or Hamilton equations and study the variational structure of the solution of the corresponding boundary-value problems. We also reduce the original ''mechanical'' problem to an auxiliary multiobjective optimization problem. This approach makes it possible to apply the effective theoretical and computational results from multiobjective programming to the original problem. We consider first order computational schemes for optimal control problems governed by mechanical systems and examine some illustrative examples.
Read full abstract