Vehicle platooning improves energy savings via vehicle-to-vehicle (V2V) communication. Ecological cooperative adaptive cruise control (Eco-CACC) is implemented in platoons for merging task by using regrouped platoon models. The merging positions are selected in the middle and tail of an original platoon with a two-vehicle sub-platoon. The distributed nonlinear model predictive controller based on signal temporal logic (DNMPC-STL) approach is developed to model the Eco-CACC merging strategy. The performance of the Eco-CACC merging strategy is modeled by objective control for a predecessor-leader following (PLF) topology. The results demonstrate that merging positions located in the tail exhibit superior performance and can be used to improve stability, tracking performance, energy consumption efficiency and SOC of battery.
Read full abstract