Effective ecological restoration requires empirical assessment to determine outcomes of projects, but conclusions regarding the effects of restoration treatments on the whole ecosystem remain rare. Control of invasive shrubs and trees in the genus Tamarix and associated riparian restoration in the American Southwest has been of interest to scientists and resource managers for decades; dozens of studies have reported highly variable outcomes of Tamarix control efforts, as measured by a range of response variables, temporal and spatial scales and monitoring strategies. We conducted a literature search and review, meta-analysis and vote count (comparison of numerical outcomes lacking reported variances and/or sample sizes) on published papers that quantitatively measured a variety of responses to control of Tamarix. From 96 publications obtained through a global search on terms related to Tamarix control, we found 52 publications suitable for a meta-analysis (n = 777 comparisons) and 63 publications suitable for two vote counts (n = 1,460 comparisons total; 622 comparisons reported as statistically significant) of response to Tamarix control. We estimated responses to control by treatment type (e.g. cut-stump treatment, burning, biocontrol) and ecosystem component (e.g. vegetation, fauna, fluvial processes). Finally, we compared results of the various synthesis methods to determine whether the increasingly stringent requirements for inclusion led to biased outcomes. Vegetation metrics, especially measures of Tamarix response, were the most commonly assessed. Ecosystem components other than vegetation, such as fauna, soils and hydrogeomorphic dynamics, were under-represented. The meta-analysis showed significantly positive responses by vegetation overall to biocontrol, herbicide and cut-stump treatments. This was primarily due to reduction of Tamarix cover; impacts on replacement vegetation were highly variable. We found concordance amongst our varied synthesis approaches, indicating that increased granularity from stricter quantitative techniques does not come at the cost of a biased sample. Overall, our results indicate that common control methods are generally effective for reducing Tamarix, but the indirect effects on other aspects of the ecosystem are variable and remain understudied. Given that this is a relatively well-studied invasive plant species, our results also illustrate the limitations of not only individual studies, but also of reviews for measuring the impact of invasive species control. We call on researchers to investigate the less commonly studied responses to Tamarix control and riparian restoration including the effects on fauna, soil and hydrogeomorphic characteristics.