This article presents the results of testing the suitability of X-ray computed tomography for the quality control of the casting moulds used for producing turbine blades. The research was focused on the analysis of cross-sectional images, spatial models and the porosity of moulds using a Phoenix L 450 microtomograph. The research material consisted of samples from three mixtures of ceramic materials and binders intended for producing casting moulds using the lost wax method. Various configurations of filling materials (Molochite and quartz flours) and binder (Remasol, Ludox PX 30 and hydrolysed ethyl silicate) mixtures were considered. X-ray computed tomography enabled the detection of a number of defects in the ceramic mass related to the distribution of mass components, porosity concentration and defects resulting from the specificity of the mould production. It was found that casting mould quality control on cross-sectional tomographic images is faster and as accurate as the analysis of three-dimensional models and allows for the detection of a whole range of ceramic defects, but the usefulness of the images is greatest only when the cross-sections are taken at an appropriate angle relative to the object being examined.