Code smell is an indicator of potential problems in a software design that have a negative impact on readability and maintainability. Hence, detecting code smells in a timely and effective manner can provide guides for developers in refactoring. Fortunately, many approaches like metric-based, heuristic-based, machine-learning-based and deep-learning-based have been proposed to detect code smells. However, existing methods, using the simple code representation to describe different code smells unilaterally, cannot efficiently extract enough rich information from source code. In addition, one code snippet often has several code smells at the same time and there is a lack of multi-label code smell detection based on deep learning. In this paper, we present a large-scale dataset for the multi-label code smell detection task since there is still no publicly sufficient dataset for this task. The release of this dataset would push forward the research in this field. Based on it, we propose a hybrid model with multi-level code representation to further optimize the code smell detection. First, we parse the code into the abstract syntax tree (AST) with control and data flow edges and the graph convolution network is applied to get the prediction at the syntactic and semantic level. Then we use the bidirectional long-short term memory network with attention mechanism to analyze the code tokens at the token-level in the meanwhile. Finally, we get the fusion prediction result of the models. Experimental results illustrate that our proposed model outperforms the state-of-the-art methods not only in single code smell detection but also in multi-label code smell detection.