Characterising the transmission dynamics between various population groups is critical for implementing effective outbreak control measures whilst minimising financial costs and societal disruption. While recent technological and methodological advances have made individual-level transmission chain data increasingly available, it remains unclear how effectively this data can inform group-level transmission patterns, particularly in small, rapidly saturating outbreak settings. We introduce a novel framework that leverages transmission chain data to estimate group transmission assortativity; this quantifies the extent to which individuals transmit within their own group compared to others. Through extensive simulations mimicking nosocomial outbreaks, we assessed the conditions under which our estimator performs effectively and established guidelines for minimal data requirements in small outbreak settings where saturation may occur rapidly. Notably, we demonstrate that detecting and quantifying transmission assortativity is most reliable when at least 30 cases have been observed in each group, before reaching their respective epidemic peaks.
Read full abstract