In this work, the oxidation of gatifloxacin (GAT), fleroxacin (FLE) and enoxacin (ENO) in aqueous solution by ferrate (Fe(VI)) was systemically investigated. Weak alkaline and high oxidant doses were favorable for the reaction. The pseudosecond-order rate constants were 0.18055, 0.29162, and 0.05476 L/(mg·min), and the activation energies were 25.13, 15.25, and 11.30 kJ/mol at pH = 8.00 and n(Fe(VI)):n(GAT) = 30:1, n(Fe(VI)):n(FLE) = 20:1, n(Fe(VI)):n(ENO) = 40:1 and a temperature of 25 °C. The maximum degradation rates of the GAT, FLE and ENO were 96.72%, 98.48% and 94.12%, respectively, well simulated by Response Surface Methodology. During the oxidation, the contribution of hydroxyl radicals (HO•) varied with time, whereas the final contribution was approximately 20% at 30 min. The removal efficiency was inhibited by anions by less than 10%, and cations by less than 25%, and significantly inhibited by high concentrations of humic acid. Moreover, two or three dominant reaction pathways were predicted, and the ring cleavages of quinolone and piperazine were mainly achieved through decarboxylation, demethlation and hydroxylation, and some pathways ended up with monocyclic chemicals, which were harmless to aquatic animals and plants. Theoretical calculations further proved that the reactions between FeO4− and neutral fluoroquinolone antibiotics were the major reactions. This work illustrates that Fe(VI) can efficiently remove fluoroquinolone antibiotics (FQs) in aqueous environments, and the results may contribute to the treatment of wastewater containing trace antibiotics and Fe(VI) chemistry.
Read full abstract