The aim of this study was to determine whether an ADP ribosylation factor (ARF)-regulated pathway is involved in the carbachol-induced contraction in rat intestinal smooth muscle. Brefeldin A, a known inhibitor of the guanine nucleotide exchange activity on ARF, reversibly inhibited the carbachol-induced contraction in intact ileal muscle strips, whereas the carbachol- and guanosine 5'-O-(3-thiotriphosphate)-induced increases in the Ca2+ sensitivity of myofilaments in beta-escin-permeabilized strips were not affected. The high-K(+)-induced contraction in intact strips was also inhibited by brefeldin A. In isolated ileal myocytes, brefeldin A inhibited the Ca2+ channel current, indicating that the inhibitory effect of brefeldin A in intact cells is related to an inhibition of voltage-dependent Ca2+ channels. Furthermore, the loading of permeabilized strips with the combination of the recombinant fully myristoylated ARF1, the guanine nucleotide exchange factor ARNO, and guanosine 5'-triphosphate did not change the tone at constant pCa (6.45) and did not modify the carbachol- and guanosine 5'-O-(3-thiotriphosphate)-induced Ca2+ sensitization. Taken together, these findings suggest that an ARF-dependent pathway is not involved in the carbachol-induced contraction.
Read full abstract