For decades now, DNA fingerprinting by means of pulsed-field gel electrophoresis (PFGE) continues to be the most widely used to separate large DNA molecules and distinguish between different strains in alternating pulses. This is done by isolating intact chromosomal DNA and using restriction enzymes with specific restriction sites to generate less than 30 restriction fragments from 50 Kb to 10 Mbp. These results make clone-specific band profiles easy to compare. Specialized equipment is required for the optimization of DNA separation and resolution, among which a contour-clamped homogeneous electric field (CHEF) apparatus is the most commonly used. As a result, the PFGE analysis of a bacterial genome provides useful information in terms of epidemiological investigations of different bacterial pathogens. For Staphylococcus aureus subtyping, despite its limitations and the emergence of alternative methods, PFGE analysis has proven to be an adequate choice and the gold standard for determining genetic relatedness, especially in outbreak detection and short-term surveillance in the veterinary field.
Read full abstract