The paper proposes a methodology to online self-evolve direct fuzzy logic controllers (FLCs), to deal with unknown and time-varying dynamics. The proposed methodology self-designs the controller, where fuzzy control rules can be added or removed considering a predefined criterion. The proposed methodology aims to reach a control structure easily interpretable by human operators. The FLC is defined by univariate fuzzy control rules, where each input variable is represented by a set of fuzzy control rules, improving the interpretability ability of the learned controller. The proposed self-evolving methodology, when the process is under control (online stage), adds fuzzy control rules on the current FLC using a criterion based on the incremental estimated control error obtained using the system’s inverse function and deletes fuzzy control rules using a criterion that defines “less active” and “less informative” control rules. From the results on a nonlinear continuously stirred tank reactor (CSTR) plant, the proposed methodology shows the capability to online self-design the FLC by adding and removing fuzzy control rules in order to successfully control the CSTR plant.