It is well known that in a network with arbitrary (convex) latency functions that are a function of edge traffic, the worst-case ratio, over all inputs, of the system delay caused due to selfish behavior versus the system delay of the optimal centralized solution may be unbounded even if the system consists of only two parallel links. This ratio is called the price of anarchy (PoA). In this article, we investigate ways by which one can reduce the performance degradation due to selfish behavior. We investigate two primary methods (a) Stackelberg routing strategies , where a central authority, for example, network manager, controls a fixed fraction of the flow, and can route this flow in any desired way so as to influence the flow of selfish users; and (b) network tolls , where tolls are imposed on the edges to modify the latencies of the edges, and thereby influence the induced Nash equilibrium. We obtain results demonstrating the effectiveness of both Stackelberg strategies and tolls in controlling the price of anarchy. For Stackelberg strategies, we obtain the first results for nonatomic routing in graphs more general than parallel-link graphs, and strengthen existing results for parallel-link graphs. (i) In series-parallel graphs, we show that Stackelberg routing reduces the PoA to a constant (depending on the fraction of flow controlled). (ii) For general graphs, we obtain latency-class specific bounds on the PoA with Stackelberg routing, which give a continuous trade-off between the fraction of flow controlled and the price of anarchy. (iii) In parallel-link graphs, we show that for any given class L of latency functions, Stackelberg routing reduces the PoA to at most α + (1-α)ċρ( L ), where α is the fraction of flow controlled and ρ( L ) is the PoA of class L (when α = 0). For network tolls, motivated by the known strong results for nonatomic games, we consider the more general setting of atomic splittable routing games. We show that tolls inducing an optimal flow always exist, even for general asymmetric games with heterogeneous users, and can be computed efficiently by solving a convex program . This resolves a basic open question about the effectiveness of tolls for atomic splittable games. Furthermore, we give a complete characterization of flows that can be induced via tolls.
Read full abstract