The energy and spectral-kinetic characteristics of ignition of anthracite microparticle powders with a bulk density of 0.5 g/cm3 were measured when exposed to continuous laser radiation at wavelengths λ = 450 and 808 nm with an exposure time of 1 second. Ignition delay times were measured depending on the radiation power density and critical values of the ignition energy density of anthracite samples were determined. The energy cost of igniting anthracite for radiation with λ = 450 nm is less than for radiation with λ = 808 nm. In the emission spectra of anthracite resulting from the absorption of laser radiation, there is a glow associated with the release and ignition of volatile substances (flame CO, glow of excited molecules CO, C2 and H2O) and thermal glow associated mainly with the heated surface of the samples, as well as the flight of incandescent carbon particles.