Continuous-flow microwave heating stands out for its ability to rapidly and uniformly heat substances, making it widely applicable in chemical production. However, in practical applications, the permittivity of the heated liquid changes dramatically as the reaction progresses, affecting the efficiency and uniformity of continuous-flow heating. Herein, this work presents a novel microwave heating device based on a coaxial structure for high-performance heating. Our approach commenced with the development of a multiphysical field model, incorporating spiraled polytetrafluoroethylene (PTFE) as a water channel and the coaxial waveguide as a container. The analysis shows that the uniform distribution of the sectional electric field of electromagnetic waves in the TEM mode within the coaxial structure can enhance heating uniformity. Then, a continuous-flow microwave heating system for different liquid loads was established, and experimental measurements were conducted. The heating efficiency for all loads exceeded 90%, which basely matched the simulation results, validating the accuracy of the model. Finally, the heating efficiency and uniformity under different permittivity loads were analyzed, as well as the impact of channel radius on heating efficiency. The device exhibits high heating efficiency under different loads, with uniform radial electric field distribution and stable heating uniformity. This continuous-flow microwave device is suitable for chemical research and production because of its high adaptability to the large dynamic range of permittivity, contributing to the promotion of microwave energy applications in the chemical industry.
Read full abstract