Currently, an increasing number of governments have adopted question answering systems (QASs) in public service delivery. As some citizens with limited information literacy often express their questions vaguely when interacting with a chatbot, it is necessary to improve the contextual understanding and reasoning ability of government chatbots (G-chatbots). This goal can be achieved through the optimisation of the matching between question, answer and context. By incorporating the Relational Graph Convolutional Networks (R-GCNs) and fuzzy logic, this study proposes a multi-turn dialogue model that introduces a re-question mechanism and a subgraph matching algorithm. The experiment results show that the model can improve the contextual reasoning ability of G-chatbots by about 10% and generate answers in a more explainable way. This study innovatively integrates a question–answer–context matching approach, re-question mechanism into the MTRF-G-chatbot model, reducing barriers to citizens’ access to government services and enhancing contextual reasoning abilities.
Read full abstract