ABSTRACT The Aerosol Research and Inhalation Epidemiological Study (ARIES) is an EPRI-sponsored project to collect air quality and meteorological data at a single site in northwestern Atlanta, GA. Seventy high-resolution air quality indicators (AQIs) are used to examine statistical relationships between air quality and health outcome end points. Contemporaneous mortality data are collected for Fulton and DeKalb counties in Georgia. Currently, 12 months of air quality and weather data are available for analysis, from August 1998 through July 1999. The interim mortality analysis used Poisson regression in generalized additive models (GAMs). The estimated log-linear association of mortality with various AQIs was adjusted for smoothed functions of time and meteorological data. The analysis considered daily deaths due to all nonaccidental causes, deaths to persons 65 years or older, and deaths in each of the two constituent counties. The fine particle effect associated with the four mortality subgroups, using only today (lag 0), yesterday (lag 1), 2-day average (average of today and yesterday), and first difference (today minus yesterday) measurements of the air quality relative to today's number of deaths was positive for lag 0, lag 1, and 2-day average and positive only for decedents at least 65 years of age using first difference. The t values ranged from 0.81 to 1.15 for lag 0, 1.04 to 1.53 for lag 1, 1.10 to 1.66 for 2-day average, and -0.32 to 0.33 for first difference with 346 or 347 days of data. No statistically significant estimate of the linear coefficient was found for the other 14 air quality variables in our interim analysis for the four mortality subgroups. We discuss diagnostics to support these models. These interim analyses did not include an evaluation of sensitivity to a larger set of lag structures, nonlinear model specifications, multipollutant analyses, alternative weather model and smoothing model specifications, air pollution imputation schemes, or cause-specific mortality indicators, nor did they include a full reporting of model selection or goodness-of-fit indicators. No conclusion can be drawn at this time about whether the findings from subsequent studies have sufficiently greater power to detect effects comparable to those found in other U.S. cities including at least 2 or 3 years of data.
Read full abstract