In this work, TiO2 spherical nanoparticles with a mean diameter of 10.08 nm (SD = 4.54 nm) were synthesized using Aloe vera extract. Rutile, brookite, and anatase crystalline phases were identified. The surface morphology of a carbon paste electrode does not change in the presence of nanoparticles; however, the surface chemical composition does. The voltammetric response to dicresyl dithiophosphate was higher when the electrode was modified with TiO2 nanoparticles. After an electrochemical response study from pH 1.0 to 12.0, pH 7.0 was selected for the electroanalysis. The electroactive area of the modified sensor was 0.036 cm2, while it was 0.026 cm2 for the bare electrode. The oxidation process showed mixed adsorption-diffusion control. The charge transfer resistance of the modified sensor (530.1 Ω, SD = 4.08 Ω) was much lower than that of the bare electrode (4298 Ω, SD = 8.53 Ω). The linear quantitative range by square wave voltammetry was from 5 to 150 μmol/L, with a limit of detection of 1.89 μmol/L and a limit of quantification of 6.26 μmol/L under optimal pulse parameters of 50 Hz frequency, 1 mV step potential, and 25 mV pulse amplitude. The sensor response was repeatable and reproducible over 30 days. The results on real flotation and synthetically contaminated soil samples were statistically equivalent to those obtained by UV-vis spectrophotometry. A dithiocarbamate showed an interfering effect on the sensor response to dithiophosphate.