Ancylostoma spp. are found worldwide. Infected dog and cat feces can contaminate soil in public places. Despite prophylactic measures being available, studies on direct remediation of Ancylostoma-contaminated soils are scarce. This study aimed to determine the impact of heat treatment and liming on the viability of Ancylostoma spp. eggs in artificially contaminated sandy soil. Sterilized sand samples were contaminated with Ancylostoma spp. eggs extracted from infected dogs' feces. Samples were heated (trial I) to 70 °C or 80 °C, then sieved after 24 hours (212, 90, 38, and 25 µm). Larval cultures were assessed for larval development following heat treatment. Five quicklime concentrations (trial II; 50, 30, 20, 10 and 5%) were used to treat sand. The effect of liming on larval cultures was assessed by measuring embryonic development. Filariform larvae were exposed to 20% quicklime (25 °C and 37 °C, 20 min). Heat treatment destroys Ancylostoma spp. eggs and prevents in vitro larval development. Liming at 50, 30, and 20% concentrations made embryonic development impossible. However, filariform larvae treated with 20% lime solution retained their motility. Heating at 70 °C and liming at 20% were sufficient to make Ancylostoma spp. egg embryogenesis impossible in experimentally contaminated sand samples.
Read full abstract