This paper presents a 3D registration method with maximal cliques (MAC) for 3D point cloud registration (PCR). The key insight is to loosen the previous maximum clique constraint and mine more local consensus information in a graph for accurate pose hypotheses generation: 1) A compatibility graph is constructed to render the affinity relationship between initial correspondences. 2) We search for maximal cliques in the graph, each representing a consensus set. 3) Transformation hypotheses are computed for the selected cliques by the SVD algorithm and the best hypothesis is used to perform registration. In addition, we present a variant of MAC if given overlap prior, called MAC-OP. Overlap prior further enhances MAC from many technical aspects, such as graph construction with re-weighted nodes, hypotheses generation from cliques with additional constraints, and hypothesis evaluation with overlap-aware weights. Extensive experiments demonstrate that both MAC and MAC-OP effectively increase registration recall, outperform various state-of-the-art methods, and boost the performance of deep-learned methods. For instance, MAC combined with GeoTransformer achieves a state-of-the-art registration recall of [Formula: see text] on 3DMatch / 3DLoMatch. We perform synthetic experiments on 3DMatch-LIR / 3DLoMatch-LIR, a dataset with extremely low inlier ratios for 3D registration in ultra-challenging cases.
Read full abstract